Fuzzy Inference and Defuzzification

Michael J. Watts
http://mike.watts.net.nz

Lecture Outline
- Crisp Rules Revision
- Fuzzy Sets revision
- Fuzzy Inference
- Fuzzy Rules
- Fuzzy Composition
- Defuzzification

Crisp Rules
- Consist of antecedents and consequents
- Each part of an antecedent is a logical expression
 - e.g. A > 0.5, light is on
- Consequent will be asserted if antecedent is true
 - IF (Presentation is Dull) AND (Voice is Monotone)
 - THEN Lecture is boring

Crisp Rules
- Only one rule at a time allowed to fire
- A rule will either fire or not fire
- Have problems with uncertainty
- Have problems with representing concepts like small, large, thin, wide
- Sequential firing of rules also a problem
 - order of firing

Fuzzy Sets
- Supersets of crisp sets
- Items can belong to varying degrees
 - degrees of membership
 - [0,1]
- Fuzzy sets defined two ways
 - membership functions
 - MF
 - sets of ordered pairs

Fuzzy Sets
- Membership functions (MF)
- Mathematical functions
- Return the degree of membership in a fuzzy set
- Many different types in existence
 - Gaussian
 - Triangular
Fuzzy Sets

• Can also be described as sets of ordered pairs
• Pair Crisp, Fuzzy values
 – \(A = \{(0,1.0), (1,1.0), (2,0.75), (3,0.5), (4,0.25), (5,0.0), (6,0.0), (7,0.0), (8,0.0), (9,0.0), (10,0.0)\} \)
• With enough pairs, can approximate any MF

Fuzzy Sets

• Fuzzification
• Process of finding the degree of membership of a value in a fuzzy set
• Can be done by
 – MF
 – Interpolating set of pairs

Fuzzy Rules

• Also have antecedents and consequents
• Both deal with partial truths
• Antecedents match fuzzy sets
• Consequents assign fuzzy sets
• Fuzzy rules can have weightings
 – \([0,1]\)
 – importance of rule
 – commonly set to 1

Fuzzy Rules

• Restaurant tipping example
• Antecedent variables are
 – quality of service
 – quality of food
• Consequent variables are
 – Tip

Fuzzy Rules

• Service can be
 – Poor
 – good
 – excellent
• Universe of discourse is 0-10

Fuzzy Rules

• Food can be
 – rancid
 – good
 – delicious
• Universe of discourse is 0-10
Fuzzy Rules

- Tip can be
 - cheap
 - average
 - generous
- Universe of discourse is 0-25%

Fuzzy Inference

- Infers fuzzy conclusions from fuzzy facts
- Matches facts against fuzzy antecedents
- Assigns fuzzy sets to outputs
- Three step process
 - fuzzify the inputs (fuzzification)
 - apply fuzzy logical operators across antecedents
 - apply implication method

Fuzzy Inference

- Rules for the tipping system
 - IF service is poor or food is rancid
 - THEN tip is cheap
 - IF service is good
 - THEN tip is average
 - IF service is excellent or food is delicious
 - THEN tip is generous

Fuzzy Inference

- Implication is really two different processes
 - inference
 - composition
- Inference is the matching of facts to antecedents
- Results in the truth value of each rule
 - degree of support
 - Alpha

Fuzzy Inference

- Assigns fuzzy sets to each output variable
- Fuzzy sets assigned to different degrees
- Determined by degree of support for rule
- Methods for assigning (inferring) sets
 - min
 - Product

Fuzzy Inference

- Min inference
- Cut output MF at degree of support

\[\mu(v)' = \min(z, \mu(v)) \]

Where:
- \(\mu \) the output MF
- \(\mu' \) is the inferred MF
- \(v \) is the value being fuzzified
- \(z \) is the degree of support
Fuzzy Inference

- Product inferencing
- Multiply output MF by degree of support
 \[\mu(v)' = z\mu(v) \]

Tipping Example

- Assume
 - service is poor
 - score of 2
 - food is delicious
 - score of 8
- How do we perform fuzzy inference with these values?

Tipping Example

- Firstly, fuzzify the input values
- Service fuzzifies to
 - Poor 0.8
 - Good 0.2
 - Excellent 0.0
- Food fuzzifies to
 - Rancid 0.0
 - Good 0.4
 - Delicious 0.6

Tipping Example

- Now, calculate the degree of support for each rule
- Rule 1:
 - IF service is poor or food is rancid
 - poor = 0.8
 - rancid = 0.0
 - \(\max(0.8, 0.0) = 0.8 \)
 - Degree of support = 0.8

Tipping Example

- Rule 2
 - IF service is good
 - good = 0.2
 - \(\max(0.2) = 0.2 \)
 - Degree of support = 0.2

Tipping Example

- Rule 3
 - IF service is excellent or food is delicious
 - excellent = 0.0
 - delicious = 0.6
 - \(\max(0.0, 0.6) = 0.6 \)
 - Degree of support = 0.6
Tipping Example

- Apply implication method
- Builds an inferred fuzzy set
- Find the min value for each output MF
- Cut output MF at this value

Min Inference

- Cut at 0.8

Min Inference

- Corresponding fuzzy set

\[MF = \{(0,0),(1,0.2),(2,0.4),(3,0.6),(4,0.8),(5,0.8), (6,0.8),(7,0.6),(8,0.4),(9,0.2),(10,0),(25,0)\} \]

Min Inference

- Degree of support of 0.4
Min Inference

- Corresponding set
 - MF = {(0,0),(1,0.2),(2,0.4),(3,0.4),(4,0.4),(5,0.4),
 (6,0.4),(7,0.4),(8,0.4),(9,0.2),(10,0), (25,0)}

Fuzzy Inference

- How are things different if we use product inferencing?

Product Inference

- Corresponding set
 - MF = {(0,0),(1,0.16),(2,0.32),(3,0.48),(4,0.64),(5,0.8),
 (6,0.64),(7,0.48),(8,0.16),(9,0.16),(10,0), (25,0)}

Product Inference

- Degree of support of 0.4

Product Inference

- Corresponding set
 - MF = {(0,0),(1,0.08),(2,0.16),(3,0.24),(4,0.32),(5,0.4),
 (6,0.32),(7,0.24),(8,0.16),(9,0.08),(10,0), (25,0)}
Fuzzy Composition

- Aggregates the inferred MF into one
- Two methods of doing this
 - Max
 - Sum

Max Composition

- MAX composition
 - Take the max of each column

<table>
<thead>
<tr>
<th>v</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu(y)$</td>
<td>0.16</td>
<td>0.32</td>
<td>0.48</td>
<td>0.64</td>
<td>0.80</td>
<td>0.64</td>
<td>0.48</td>
<td>0.32</td>
<td>0.16</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu(y)$</td>
<td>0.48</td>
<td>0.36</td>
<td>0.24</td>
<td>0.14</td>
<td>0.06</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Max Composition

- MAX takes the max fuzzy value for each value of v
 - equivalent to taking the fuzzy values for the highest activated rule for each output fuzzy set
- SUM sums all fuzzy values for each value of v
 - can lead to truth values > 1
 - may need to be normalised to [0, 1]
 - implications for defuzzification

Fuzzy Composition

- Assume
 - 3 MF attached to the output
 - A, B and C
 - Each MF has been asserted by two different rules
 - 6 rules activated (degrees of support) > 0
 - Degrees of support
 - 0.8, 0.4, 0.6, 0.5, 0.7, 0.3
 - Prod inference used

Max Composition

- For Set A
 - $\mu(y)$
 - 0.16 0.32 0.48 0.64 0.80 0.64 0.48 0.32 0.16 0
 - $\mu(v)$
 - 0.12 0.24 0.36 0.48 0.60 0.48 0.36 0.24 0.12 0

- For Set B
 - $\mu(y)$
 - 0.16 0.32 0.48 0.64 0.80 0.64 0.48 0.32 0.16 0
 - $\mu(v)$
 - 0.12 0.24 0.36 0.48 0.60 0.48 0.36 0.24 0.12 0

- For Set C
 - $\mu(y)$
 - 0.16 0.32 0.48 0.64 0.80 0.64 0.48 0.32 0.16 0
 - $\mu(v)$
 - 0.12 0.24 0.36 0.48 0.60 0.48 0.36 0.24 0.12 0
Sum Composition

- Sum composition
 - sum each column

<table>
<thead>
<tr>
<th>$\mu(t)$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>0.16</td>
<td>0.32</td>
<td>0.48</td>
<td>0.64</td>
<td>0.8</td>
<td>0.94</td>
<td>0.84</td>
<td>0.68</td>
<td>0.68</td>
<td>1.02</td>
<td>1.36</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>$\mu(t)$</td>
<td>1.36</td>
<td>1.02</td>
<td>0.68</td>
<td>0.56</td>
<td>0.68</td>
<td>1.02</td>
<td>1.36</td>
<td>1.7</td>
<td>1.36</td>
<td>1.02</td>
<td>0.68</td>
<td>0.34</td>
<td>0</td>
</tr>
</tbody>
</table>

Defuzzification

- Converts inferred MF into crisp numbers
- Many different types in existence
- Two common ones
 - Centre of Gravity
 - Mean of Maxima

COG Defuzzification

- Centre of Gravity
 - $y = \frac{\sum_{i}^{K} \mu(v_i)v_i}{\sum_{i}^{K} \mu(v_i)}$
- Where:
 - y is the crisp value
 - K is the number of items in the fuzzy set

COG Defuzzification

- Applying this to the first composite set

\[
\begin{align*}
\mu(t) & = 0.48, 0.26, 0.14, 0.26, 0.42, 0.36, 0.7, 0.36, 0.42, 0.28, 0.14, 0 \\
\sigma & = 6.24, 5.04, 3.6, 3.34, 3.78, 7.36, 7.36, 10.64, 14, 11.76, 0.26, 6.44, 3.36, 0
\end{align*}
\]

\[
\sum_{i}^{K} \mu(v_i)v_i = 121.68
\]

\[
\sum_{i}^{K} \mu(v_i) = 10.1
\]

\[
\frac{121.68}{10.1} = 12.05
\]
COG Defuzzification

- Mean of Maxima
 - MoM
- Finds the mean of the crisp values that correspond to the maximum fuzzy values
- If there is one maximum fuzzy value, the corresponding crisp value will be taken from the fuzzy set

MoM Defuzzification

- Applying this to the first composite set
- Maximum fuzzy value is 0.8
- Corresponding crisp value is 4
- This is the value returned by MoM

MoM Defuzzification

- What about sets with > 1 maximum?
- Apply this to the third composite set

<table>
<thead>
<tr>
<th>(\nu)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu(\nu))</td>
<td>0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>(\nu)</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>(\mu(\nu))</td>
<td>0.6</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
<td>0.5</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

MoM Defuzzification

- Maximum fuzzy value if 0.8
- Corresponding crisp values are
 - 4, 5 and 6

 \[y = \frac{4 + 5 + 6}{3} = 5 \]
Summary

- Fuzzy rules match fuzzy antecedents to fuzzy consequents
- Degree to which antecedents are true determine the degree of support
- Fuzzy logic functions are used to determine this

Summary

- Fuzzy inference involves calculating an output fuzzy set
- Different inference process produces different inferred MF
- Two inferences processes are
 - max-min
 - Max-prod

Summary

- Two common composition methods
 - MAX
 - SUM
- Inference methods described by combining inference & composition methods
 - max-min (or min-max)
 - max-prod
- Defuzzification converts a composed MF to a single crisp value

Summary

- Different defuzzification methods produce different crisp values
 - sometimes wildly different
- Two different defuzzification methods
 - Centre of Gravity
 - CoG
 - Mean of Maxima
 - MoM